Arquitectura GT200

Arquitectura GT200

Hoy celebramos por partida doble. Por un lado NVIDIA lanza una nueva arquitectura luego de 18 meses y por otra parte, bastante más importante, estrenamos nuevo colaborador: Nicolás Rencoret, una eminencia en el tema gráfico que nos dará una cátedra de lo que trae GT200 bajo la capota.

1.400 millones de transistores miniaturizados en un cuadrado de silicio de 576mm2 con proceso de fabricación de 65nm, muchos de ellos corriendo a más de 1200MHz, alimentados por 1GB de memoria sobre un bus de 512-bit de ancho y disipando 236w. Este es el más breve de los resúmenes de la arquitectura GT200 de NVIDIA. Sacando una calculadora y haciendo unas cuantas sumas y restas, es fácil comprender que la empresa de Santa Clara está introduciendo hoy un chip que estresa al límite muchas de las estrictas leyes de la física.

Realmente es para dejar pasmado a cualquiera que pueda comprender la magnitud de lo que pudo lograr la emp

resa. Por eso, hoy les mostraremos un análisis técnico detallado del desarrollo de este GPU para no solo entender que es lo que lo hace especial, sino para entender cómo ha cambiado la mentalidad de NVIDIA con todo el ruido que ha existido en el ambiente con respecto a CPUs+GPUs, Larrabees, fusiones y demás acontecimientos recientes en el mundo de los GPUs y el procesamiento de datos.

El tamaño y sus implicancias

El GPU GT200 es grande, extremadamente grande y esto combinado con el hecho de que la arquitectura de GPUs es más compleja que la de un CPU, tiene una cantidad importante de consecuencias.

Para aproximarse de mejor forma a este tema, es ideal visualizar la evolución de los GPUs y los CPUs a través del tiempo en cuanto a tamaño y densidad de componentes.


Pinche para agrandar

Como se puede apreciar, Intel ha sido capaz de mantener el tamaño de sus CPUs bajo control lo cual es el resultado principalmente del hecho de que son líderes en los procesos de miniaturización para la fabricación de chips, junto con el hecho de que un muy elevado porcentaje de sus transistores son empleados en memoria cache en vez de ser unidades de procesamiento. Por otro lado, a NVIDIA le ha costado controlar el tamaño de sus GPUs y sus desarrollos les están comenzando a salir un poco de las manos. La razón de esto, es que mientras más grande sea el tamaño del cuadrado de silicio, se pueden obtener menos chips por cada oblea (wafer) que se procesa. Esto es obvio, pues la oblea no ha crecido en diámetro – 300mm – en muchos años. Si para el G80 cada disco tenía 121 GPUs de 484mm², siendo que el tamaño del GT200 es ahora de 576mm², la cantidad de ellos se reduce aproximadamente  a 100. Junto con esto, la cantidad de chips sin defectos o en otras palabras, su rendimiento productivo (yields) disminuye debido a que las impurezas ahora amenazan a la superficie de un circuito impreso cuya área es mayor. Por ende, la cantidad de GPUs buenos se reduce en una buena cantidad con respecto a los del G80 trayendo como resultando que el costo del GT200 sea significativamente más alto para la empresa.


Pinche para agrandar

Adicionalmente, la cantidad de transistores en cada procesador gráfico ha aumentado a un ritmo considerablemente más rápido que el de los CPUs como se puede ver en la tabla. Considerando que es Intel la empresa que utiliza los procesos de manufactura más modernos del mundo y no NVIDIA, se puede ver como esta última esta estresando mucho más la tecnología a su límite. Esto se demuestra de forma muy clara cuando se compara el consumo en watts de los más recientes desarrollos de ambas empresas: mientras el Intel Core 2 Extreme QX9770 consume – según documentos de la empresa – 150w, el GT200 disipa 236w, un 57% más aproximadamente. No solo esto, debido a que los transistores del GPU son en su gran mayoría unidades de procesamiento a comparación del caso de Intel en donde la mayoría se emplean en memoria cache, la cantidad de ruido eléctrico generado dentro de cada GPU está haciendo que cada vez sea más difícil que ellos logren frecuencias más elevadas.Las consecuencias de lo anterior hacen fácil preveer que NVIDIA está llegando al límite de lo que pueden hacer en un solo chip para su siguiente generación de GPUs, tanto por factibilidad como por costos. ATI entendió esto desde hace un buen tiempo y optó por una solución inteligente: GPUs menos complejos, más económicos y más manejables, lo cual incluso les permite atacar el mercado de la gama alta de una forma más costo-eficiente empleando tarjetas de video con dos GPUs. Si se sigue la lógica, el GPU de siguiente generación de NVIDIA debería estar basado en una nueva arquitectura que diste del actual G80 y GT200. Esta nueva arquitectura debiese ser desarrollada de forma radicalmente diferente para mitigar los problemas actuales que hacen muy difícil que sea factible que nuevamente se duplique el numero de transistores (estaríamos hablando de más de 2.800 millones) y que el tamaño del chip se pueda fabricar con costos razonables. Para ello hay tres caminos posibles:

  • Usar el mismo modelo de ATI, en donde la gama alta la dominan tarjetas de video con más de un GPU.
  • Desarrollar las unidades funcionales de la arquitectura en varios chips como lo hacía antes 3dfx (ejemplo: un chip para shaders, otro para ROPs y otro para visualización de imágenes).
  • Una nueva arquitectura muy diferente a lo que estamos acostumbrados que permita crear GPUs más poderosos con aumentos marginales en la cantidad de transistores en cada generación.